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ABSTRACT

The purpose of this study was to characterize damage initiation and
growth in notched titanium matrix composites at room temperature. Double
edge notched or center open hole SCS-6/ Ti-15-3 specimens containing 0°
plies or containing both 0° and 90° plies were fatigued. The specimens
were tested in the as-fabricated (ASF) and in heat-treated conditions. A
local strain criterion using unnotched specimen fatigue data was successful
in predicting fatigue damage initiation. The initiation stress level was
accurately predicted for both a double edge notched unidirectional specimen
and a cross-plied center hole specimen. The fatigue produced long multiple
cracks growing from the notches. These fatigue cracks were only in the
matrix material and did not break the fibers in their path. The
combination of matrix cracking and fiber/matrix debonding appears to

greatly reduce the stress concentration around the notches. The laminates
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that were heat treated showed a different crack growth pattern. In the ASF
specimens, matrix cracks had a more torturous path and showed considerably
more crack branching. For the same specimen geometry and cyclic stress,
the [0/90/0] laminate with a hole had far superior fatigue resistance than

the matrix only specimen with a hole.

KEYWORDS : Metal matrix composite, silicon carbide fibers, fiber/matrix

interface,

INTRODUCTION

Titanium metal matrix composites (MMC) are being considered for
high temperature structural applications on man-rated aircraft. Prior to
application, however, the fatigue and damage tolerance behavior of these
materials must be well understood and be predictable. The purpose of this
paper is to present an analytical and experimental study that describes
some details of the fatigue crack initiation and growth in specimens
containing either a crack-like slit or a circular hole. This study follows
previous work on the unnotched, room-temperature behavior of titanium/
silicon carbide composites [1l] and on the effect of a high temperature
cycle on the mechanical behavior of this composite [2]. A brief review of
the pertinent unnotched fatigue data from the previous reports will be
given in the following section. This will be followed by a description of
the material and specimens and the testing procedures used. Then the
predicted damage initiation stress levels are compared to those observed
experimentally. 1In addition, micrographs will show the crack growth

progression as a function of applied load cycles. In some cases the



surface crack growth is compared to etched or polished specimens which
reveal the subsurface damage in the matrix and fiber. Some rationale for

the observed damage growth will be discussed.

BACKGROUND

Data for the applied maximum cyclic stress versus the number of
load cycles to failure was presented for four lay-ups of SCS-6/Ti-15-3 in
reference [1]. The room temperature data for the as-fabricated specimens
is shown in Figure 1. All of the lay-ups, [0]8, [02/i45}2, [O/i45/90]2,
and [0/90}23, contain 0o plies. Since the fiber/matrix interfaces in the
off-axis plies fail after a very few cycles [1], the O0 plies carry most of
the load during the fatigue life of these specimens. Because of these
interface failures in the off-axis plies, those laminates containing off-
axis plies experience a significant reduction in overall stiffness in the
first few cycles. After the first few cycles, however, the stiffness
remains constant for the remainder of the fatigue life until just prior to
specimen failure. The strain range is, therefore, also constant with the
applied constant loading after the first few cycles. This strain range can
be multiplied by the fiber modulus of 400 GPa to yield the cyclic stress in
the 0o fiber during essentially the entire fatigue life [1]. When the
cyclic stress in the O0 fibers was calculated for each data point in Figure
1 and plotted against the number of cycles to fatigue failure, the data
from the four different laminates collapsed into a narrow band, as shown in
Figure 2. This suggests that the fatigue life of a given laminate is a
function of the stress in the Oo fiber. This is reasonable since none of
the laminates tested will fail until the 00 plies fail. The cycles to

failure as a function of the overall laminate strain range is also shown in



figure 2. This data, in terms of the strain range, will be used later to
predict local damage using a strain range criterion.

Naik, Johnson and Pollock [2] have shown that the mechanical
behavior of S§CS-6/Ti-15-3 [0/90/0] laminate can be significantly effected
by exposure to the high temperature cycle (described later) associated with
a superplastic forming/diffusion bonding (SPF/DB) process. Figure 3 shows
an S-N curve for the as-fabricated (ASF) and the SPF/DB materials. The
data shows thét the SPF/DB material experienced a 25 percent drop in static
strength and a significant reduction in fatigue resistance. This
degradation in mechanical behavior was attributed to a change in failure
mode caused by an increase in the fiber/matrix interface strength and an
increase in the thermal residual stresses in the matrix surrounding the
fiber. TFigure 4 shows a schematic of the failure processes described in
[2]. 1In the ASF case, the interface was weak and the residual stresses
were lower, thus, allowing the matrix crack to debond along the length of
the fiber and then continue on the other side of the fiber without breaking
the fiber, In the SPF/DB case, the interface strength was strong enough,
coupled with the higher thermal residual stresses [2], to cause the matrix
crack to propagate through the fibers. As described in [2], it can be
shown by a shear lag analysis [3] that the stress in the first unbroken
fiber in the crack path is 35 percent higher for the SPF/DB failure mode
(figure 4), thus explaining the resulting change in mechanical behavior.

The present work will examine how fatigue damage initiates and
grows in the presence of a stress concentration and the applicabilicy of
the knowledge of the failure process observed in an unnotched coupon to the

local area at a notch tip.



EXPERIMENTAL PROCEDURES

Materials and Specimens

All specimens were made of SCS-6/Ti-15V-3Cr-3Al1-3Sn (referred to as
SCS-6/Ti-15-3). Ti-15-3 is a metastable beta titanium alloy [&4]. SCS-6
fibers are silicon carbide fibers that have a carbon core and a thin
carbon-rich surface layer [5]. The typical fiber diameter is 0.142 mm,

The composite laminates are made by hot-pressing Ti-15-3 foils between
unidirectional tapes of SCS-6 fibers. The layups used in the present study
were [0]8, [0/90]25, and [0/90/0]. The thickness of the 8-ply and 3-ply
specimens was approximately 2 mm and 0.68 mm, respectively. The fiber
volume fractions for the 8-ply and 3-ply specimens were approximately 0.325
and 0.375, respectively.

All specimens were 19-mm wide and about 140-mm long and were cut
using a diamond whecl saw. As shown in Fig. 5(a), the [O]8 specimens were
machined using electro-discharge machining with edge notches that were 0.45
mm thick and 3 mm long. The [0/90]2S and [0/90/0] specimens had center
holes that were machined using a diamond core drill and were 6.35 mm in
diameter (Fig. 5(b)).

All 8-ply specimens were tested in the as-fabricated (ASF)
condition, except one unidirectional edge notched specimen, which was in
the aged condition. This ageing was conducted at ABZOC for 16 hours. As
discussed in reference [1], this ageing had a significant effect on the
properties of the Ti-15-3 mater151 and also increased the fiber/matrix
interface strength.

The [0/90/0] specimens were cut from two panels. One of the panels

was in the as-fabricated (ASF) condition. The second panel was subjected



to a thermal processing cycle that simulated a superplastic forming/
diffusion bonding (SPF/DB) operation. This simulated SPF/DB cycle was
performed in a vacuum furnace and consisted of raising the temperature from
ambient to 700°C at a rate of IOOC per minute., After stabilizing at 700°C
the temperature was further increased to 10000C at a rate of AOC per
minute, The panel was held at 10000C for 1 hour. It was then furnace
cooled to 5940C at a rate of BOC per minute and held at that temperature
for 8 hours. Finally, it was furnace cooled to 15000 and held for about 10
hours before cooling down to ambient temperature. As described in
reference [2], in the unnotched laminates, this SPF/DB cycle increases the
thermal residual stresses in the composite and also leads to an increased
fiber/matrix interface strength.

One rectangular unreinforced titanium specimen (19 mm by 140 mm)
with a center hole (6.35-mm diameter) was also tested. This unreinforced
titanium specimen was a "fiberless composite” made by consolidating Ti-15-3
foils with the same temperature-time-pressure cycle used for the composite

laminates.

Test Procedure and Equipment

The specimens were tested in a hydraulically-actuated, closed-loop,
servo-controlled testing machine. The load, measured by a conventional
load cell, was used for the feedback signal. All specimens were tested
under constant amplitude fatigue at a frequency of 10 Hz and a stress ratio
R of 0.1. Two different test approaches were used in the present study.
To study damage initiation, some specimens were tested using an incremental
loading approach. Thus, the [0]8 and {0/90}2S ASF specimens, edge notched

and center hole, were tested at a series of stress range values; at each



stress range they were tested for 50,000 cycles before the stress range was
increased (see Table 1). To study damage growth, other specimeﬁs were
tested at a constant stress range. Thus, the aged [O]8 specimen and the
[0/90/0] ASF and SPF/DB specimens were tested at a constant stress range.

The fatigue tests were stopped periodically and the specimens were
radiographed at 75 percent of the maximum cyclic stress with an industrial-
type "soft" X-ray machine with a 0.25-mm thick beryllium window and a
tungsten target. The voltage was set at 50 kV for the [0]8 and [0/90]25
specimens and at 40 kV for the [0/90/0] specimens. A Kodak high resolution
X-ray film (type M-II) was mounted to the specimen on the opposite side.
The X-ray target-to-film distance was 610 mm. The {0/90/0] specimens were
exposed at 5 mA for 75 s, while the other specimens were exposed at 20 mA
for 60 s. This procedure resulted in good contrast between the fibers and
the matrix (see figure 6). A thin aluminum plate, 0.7-mm thick, was used
as a filter and placed between the specimen and the X-ray tube. This
resulted in good definition along the edges of the hole and the notches.
Along with the X-rays, surface replicas and clip gage readings were 'also
taken periodically.

Before testing the specimens, the region around the hole and the
notches was polished by fine grain sandpaper to aid visual observations of
fatigue damage initiation and growth. The polished surfaces also helped in
getting good quality replicas of the damage around the hole and the
notches. Cellulose acetate film was used to make surface replicas at
various stages of crack initiation and growth. The replicas were then
studied under an optical microscope. For the open hole specimens, a clip
gage, located diametrically inside the hole, was used to record load versus

hole elongation (along the loading direction) at various stages of



undamaged and damaged specimen history. Such a local load-elongation plot
would show a marked change in the local stiffness if there were any fiber
failures associated with the visible surface cracks.

After testing, some specimens were sectioned and polished to study
the internal damage in the matrix and the fibers. Other specimens were
exposed to hydroflouric acid to dissolve the surface layer of titanium to

expose the fibers beneath.

RESULTS AND DISCUSSION

Test results and discussions for the double edge notched specimens
are first presented for both the ASF and the aged specimens. These are
followed by a description of the results for the [0/90]25 ASF and the
[0/90/0] ASF and SPF/DB center-hole specimens. Finally, results for the

center open hole "fiberless matrix" specimen are presented.

Double Edge Notched Specimens

Both the ASF and aged specimens were tested in the double edge
notched configuration. As mentioned, the [O]8 ASF specimens were tested
using an incremental stress range approach in which the specimen was
fatigued at each stress range for 50,000 cycles (see Table 1). The
objective of using such an incremental approach was to determine the stress
range at which damage initiation occurred. It was important to make a
reasonable prediction of the damage initiation stress before starting the
test. The data in figure 2 for unnotched SC5-6/Ti-15-3 laminates was used
together with the computed notch stress concentration factor to make such a

prediction. According to the data in figure 2, the unnotched [O]8 laminate



has an endurance strain range (at 50,000 cycles) of 0.0033. Using the
computed stress concentration factor of 5.61 for the notched laminate (see
Appendix), it can be shown, using a simple rule of mixtures analysis, that
an applied maximum cyclic stress of 122 MPa would result in local damage
initiation after 50,000 cycles for the notched laminate. For the ASF
specimen, tested using the incremental stress range approach, damage
initiation was observed after 25,000 cycles at a maximum cyclic stress of
122 MPa (see Table 1). Also, a second ASF specimen (see Table 1) was
tested using the incremental stress range approach starting at a cyclic
maximum stress of 250 MPa. Using the rule of mixtures and the computed
stress concentration of 5.61 this will lead to a local strain range of
0.006 at the notch tip. According to the data in figure 2, local damage
initiation would occur at this strain range after 5000 cycles. Damage
initiated in this specimen after 7,500 cycles at a maximum cyclic stress of
250 MPa. The same incremental stress range approach was continued after
damage initiation in order to study damage growth in these specimens. In
contrast to the test procedure for the ASF specimens, the aged specimen was
tested at a constant stress range the entire test in order to study fatigue
damage growth,

Figure 7 shows micrographs of surface replicas of the regions near
the notch tips for an [0]8 ASF specimen (see Table 1 for load history).
All replicas were taken after 50,000 cycles at a particular maximum cyclic
stress. Figure 7(a) shows damage growth in its early stages. Cracks start
to grow from the corners of the notches at about 45 degrees to the fiber
direction. At higher loads, secondary cracks initiate from the notches and
grow at angles approaching the fiber direction (figure 7(b) and 7(c)).

There is also evidence of crack branching. The first 45 degree cracks



change direction and tend to grow in a direction perpendicular to the fiber
direction. At still higher loads (figure 7(d)), the secondary cracks
become the dominant cracks and start growing almost parallel to the fiber
direction. Again, there is more evidence of crack branching.

In order to ascertain whether fiber failure was associated with the
surface cracking seen in figure 7, some specimens were treated with
hydroflouric acid after testing. This treatment dissolved the titanium
from the surface. The acid first seeped into the surface cracks and, thus,
etched deeper in those regions where there were surface matrix cracks.

This led to the fibers being more clearly visible in these regions. Such
preferential etching of the surface layer allowed to ﬁreserve the original
cracking pattern, to some extent, while exposing the fibers directly
beneath the surface cracks. Figure 8 shows micrographs of an acid-etched
specimen along with photographs of replicas showing corresponding surface
damage. All of the fibers underneath the surface cracks appear to be
intact. The absence of fiber failure was also confirmed by the
radiographs.

The aged [0]8 specimen showed significant differences in the damage
growth patterns from the notch tips. As shown by the photographs of
surface replicas in figure 9, the cracks initiate at 45 degrees to the
fiber direction. However, unlike the ASF specimens, there are no secondary
cracks and the 45 degree cracks are the dominant cracks. After about
100,000 cycles these 45 degree cracks change direction and continue growing
perpendicular to the fiber direction. For the specimen shown in figure 9,
one of the cracks started in a direction almost perpendicular to the fiber
direction and then branched into two 45 degree cracks. This growth may

have been due to a broken fiber that was found ahead of the notch, which
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could force the matrix to crack at that point. This fiber could have been
broken by the machining process.

Figure 10 shows micrographs of the aged [0]8 specimen before and
after it was treated with hydroflouric acid. All of the fibers underneath
the surface cracks appear to be intact. There is only one broken fiber
visible next to one notch and, as mentioned above, this could have been the
result of the notch machining process.

The most significant finding in the above tests, on both the ASF
and aged [0]8 notched specimens, was that the cracks grew only in the
matrix leaving the fibers intact. The test stress levels were chosen by
considering the stress concentration of the notch and the strain range at
which fatigue failure had been observed for the unnotched laminate (Figure
2). It was expected that the matrix cracking would preceed fiber breakage
only by a short distance. The lack of fiber failure suggests that the
multiple matrix cracking and/or fiber/matrix debonding led to a reduction
of the notch stress concentration to a level that was below the fatigue
endurance limit of 1320 MPa for the S$CS-6 fibers (see Figure 2).

The initiation of matrix cracks at 450 to the fiber direction, in
both the ASF and aged [0]8 specimens, was another unexpected finding.
According to the finite element analysis (see Appendix) of the notched
specimen, the critical region for crack initiation lies along a line
joining the two edge notches and not along a 450 line from the notches.
One explanation for theVAQ? cracks cpuld berphe presence of fiber/matrix
debonding at the fiber next to the notch. According to the micromechanics
analysis in reference 7, there are high tensile stresses acting normal to
fiber just ahead of the notch. These stresses could lead to fiber/matrix

debonding before the cyclic load cracks the matrix. A debond in the
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fiber/matrix interface just ahead of the notch tip will redistribute the
stresses locally causing a shift in the critical crack initiation region to

0
be along a 45 line instead of along the net section.

Center Hole Specimens

Center hole specimens made from an ASF [0/90]25 laminate and ASF
and SPF/DB [0/90/0] laminates were also tested in the present study. The
[0/90]25 ASF specimen was tested using the same incremental approach used
for edge notched specimens. The [0/90/0] specimens were tested at a
constant stress range in order to study damage growth and have a direct
comparison of the cracking behavior of the ASF to the SPF/DB condition.

The data In figure 2 for unnotched SCS-6/Ti-15-3 laminates was used
together with the computed hole stress concentration factor (see Appendix)
and AGLPLY [6] to make a prediction of the damage initiation stress before
starting the incremental stress testing. According to the data in figure
2, the unnotched [0/90]25 laminate would have a fatigue endurance limit at
a laminate strain range of 0.0033. Using the computed stress concentration
factor of 3.60 (see Appendix) for the center hole [0/90]25 laminate [8], it
was shown that an applied maximum cyclic stress of 160 MPa would result in
local damage initiation after 50,000 cycles for the [0/90]zs center hole
laminate. Testing was started at a maximum cyclic stress of 137 MPa (see
Table 1). For the [0/90]2S specimen tested using the incremental approach,
damage initiation was observed after 1000 cycles at a maximum cyclic stress
of 150 MPa. The same incremental stress range approach was continued after
damage initiation in order to study damage growth in this specimen. The
(0/90/0] ASF and SPF/DB specimens were tested at a constant maximum cyclic

stress of 215 MPa which corresponds to a local maximum cyclic stress of 780
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MPa using a stress concentration factor of 3.62 at the hole. From Figure 3
this stress level should have resulted in locél damage in 17,000 cycles for
the ASF specimen and 100 cycles for the SPF/DB. For the ASF specimen
tested damage initiation was observed at 50,000 cycles and at 40,000 cycles
for the SPF/DB specimen.

Figure 11 shows a photograph of the multiple crack pattern that was

observed in the center-hole [0/90] specimen. The cracks are the light

2s
streaks seen in the photograph. This type of damage was also observed by
Harmon and Saff [9] for center hole specimens of SCS-6/Ti-15-3. In order
to study the internal damage, the specimen shown in figure 11 was sectioned
and polished. Figure 12 shows micrographs of the damage in the 00 ply.
Figure 12(a) shows cracks in the matrix but no fiber failure. Figure 12(b)
shows a close-up view of one of these matrix cracks and the region around
it. There is evidence of fiber/matrix debonding along the first fiber next
to the hole and also on both sides of the matrix cracks. This corresponds
to the ASF failure mechanism shown in figure 4.

Figure 13 shows micrographs of surface replicas for an ASF [0/90/0]
specimen. There is evidence of multiple matrix cracking similar to that
seen in the double edge notched ASF specimens. There is also a tendency
for crack branching. After about 1,000,000 cycles, the cracks had grown
to the edges of the specimen. However, based on the clip gage readings
there was only a 8 percent difference in the local stiffness after 100,000
cycles. This suggests that the matrix cracks were not accompanied by fiber
failure. This was confirmed by the radiographs and by etching away the
surface layer of titanium.

Figure 14 shows fatigue damage growth for the SPF/DB [0/90/0]

specimen., Multiple cracking around the hole boundary was observed as in
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the ASF specimen. However, these cracks were straighter than those in the
ASF specimen and showed no branching. Again, the clip gage readings showed
only a 2.6 percent difference in the local stiffness (after 50,000 cycles),
indicating a lack of fiber failure. This was confirmed by the radiographs
and by etching away the surface layer of titanium.

The lack of fiber failure was once again the most unexpected
finding for the center-hole specimens. The test stress levels were chosen
by considering the stress concentration of the hole and the fatigue S-N
curve of the unnotched laminate. The applied stress should have been high
enough to fail the fibers next to the hole. Apparently the stress
concentration at the hole was significantly reduced after a few cycles by a
combination of matrix cracking and/or fiber/matrix debonding. For example,
consider the ASF [0/90/0] specimen containing a center hole with a stress
concentration factor of 3.62. The maximum local stress at the edge of the
hole was estimated to be about 780 MPa for the applied maximum cyclic
stress of 215 MPa. Based on the S-N curve for the ASF [0/90/0] specimen in
Figure 3, local damage, including fiber failure, would be expected at
approximately 17,000 cycles. However, the matrix cracks and the
fiber/matrix debonding near the hole lowered the stress concentration.

This was shown in Figure 12, for the [0/90]2S specimen, where the first
fiber next to the hole has debonded from the matrix. Some theoretical
estimates of the effect of this type of fiber/matrix debonding have been
examined by Goree and Gross [3] using a shear-lag theory. If we assume
that the fiber/matrix debonding effectively removed the stress
concentration due to the hole, then the net section stress for the [0/90/0]
ASF specimen would be 320 MPa (215 MPa/0.67, the ratio of net section to

gross section area) for an applied maximum cyclic stress of 215 MPa.
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Figure 3 shows that the 320 MPa stress is well below the fatigue limit for
the ASF laminate. Even if the matrix were completely cracked in the net
section and the fibers carried all the load, the stress in the 0o fibers
would be 865 MPa (320 MPa/0.37, the fiber volume fraction). Figure 2 shows
that this value of fiber stress is well below the fatigue limit for the
fibers.

The limiting fiber stress range is approximately 1320 MPa (see
Figure 2). This corresponds to a strain range in the fiber, and also in
the composite, of 0.0033. Thus, the strain range in the [0/90/0} composite
should be atleast 0.0033 in order to break fibers. Using a composite
longitudinal modulus of 156 GPa [2], the maximum cyclic stress in the
composite should be atleast 572 MPa in order to break fibers. Assuming the
matrix carries its share of the load, the stress concentration would,
therefore, have to be below 2.66 (computed as the ratio (572 MPa/215 MPa))
in order to not fatigue the fibers, next to the hole, beyond their fatigue
limit. It does not seem unreasonable to think that local fiber/matrix
debonding at the hole could lower the stress concentration from the
original 3.62 to below 2.66. These results indicate that if the stress
concentration is reduced (eg. by fiber/matrix debonding), a much higher
laminate stress is required before the 00 fibers and, subsequently, the
composite will fail.

Finally, an unreinforced titanium specimenrwas tested at the same
stress range used for the [0/90/0] ASF and SPF/DB specimens. A crack
initiated for this specimen at about 25,000 cfei;s andra ;ingle crack grew
from each side of the hole along the net-section of the specimen. The
specimen failed at 31,000 cycles when the fatigue crack on one side of the

hole grew to the edge of the specimen. This indicates that the composite
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is much more resistant to fatigue failure than the matrix alonme. Although
the matrix material of the composite showed significant fatigue cracks, the
fibers acted to retain stiffness and to carry the load. The fact that the
matrix cracks grew around the fibers without fracturing the fibers in the
ASF [0/90/0} composite, even when the matrix cracks were quite long, is an
interesting, and somewhat unexpected, phenomenon. Marshall, Cox and Evans
[10] have discussed analytically how a long matrix crack can reach a steady

state crack growth condition without failing fibers in a ceramic matrix

composite.

CONCLUSTIONS

The purpose of this study was to characterize damage initiation and
growth in notched titanium matrix composites at room temperature. Double
edge notched or center hole SCS-6/Ti-15-3 specimens containing either
unidirectional plies or both 0° and 90° plies were fatigued. The specimens
were tested in the as-fabricated (ASF) or in one of two heat-treated
conditions. Replicas of the surface cracks were taken during the fatigue
testing. Radiographs were also taken periodically during testing to
monitor fiber breaks. Several of the specimens were either acid etched or
polished to reveal subsurface damage. The following conclusions were
derived from this investigation:

A local strain criterion using unnotched specimen fatigue data was
successful in predicting fatigue damage initiation in the matrix. The
initiation stress level was accurately predicted for both a unidirectional

double edge notched specimen and a cross-plied center hole specimen.
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The fatigue loading produced long multiple fatigue cracks growving
from the notches. These fatigue cracks were only in the matrix material
and did not break the fibers in their path.

The combination of matrix cracking and fiber/matrix debonding
appears to greatly reduce the stress concentration around the notches.

The laminates that were heat treated (either aged or SPF/DB)
showed fatigue behavior similar to the ASF specimens. However, the matrix
cracks in the ASF specimen had a somewhat more torturous path and showed
considerably more crack branching.

For the same notch geometry and cyclic stress, the [0/90/0]
laminate had far superior fatigue resistance than the matrix material

alone.
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APPENDIX

The stress concentration factors for the edge-notched specimens and

the center-hole specimens were determined by two different techniques. In

both cases, the specimen was assumed to be an orthotropic laminate and the
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corresponding laminate properties were obtained by using AGLPLY [6] and the
fiber and matrix properties from reference [1}.

The edge-notched specimens were analyzed using a two dimensional
finite element analysis. Isoparametric, quadrilateral elements were used
with a very fine mesh refinement next to the notch. A convergence study
for the mesh refinement was conducted by comparing the computed stress
concentration factor for an isotropic specimen with handbook values,

The center-hole specimens were analyzed using the equations in
reference [8] for orthotropic laminates. The effects of finite width on
the stress concentration are also appropriately accounted for by the

equations in reference [8].
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Table 1:- Test matrix and loading history (at R = 0.1) for the specimens

tested.

Specimen Type Figure(s) Cycles Maximum Cyclic Stress (MPa)

Edge Notched Specimens

ASF, [0]g 8 50,000  122%,133,148,163,180,198,215,

239,262,290,315,350,383
ASF, [0]g 7 50,000 250%,280,310, 345,380,422
aged, [0], 9,10 850,000 250

Center Hole Specimens

ASF, [0/90],_ 11,12 50,000 137, followed by,
70,000 150
ASF, [0/90/0] 13 4,000,000 215
SPF/DB, [0/90/0] 14 2,680,000 215
ASF Matrix, Ti-15-3 - " 31,000° 215

a Specimens were tested at each of the maximum cyclic stresses (at R = 0.1)

for 50,000 cycles in the order in which they are listed.

b Only case where fatigue failure was observed; all other specimens did

not fail after the completion of the loading history above.
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SCS-6/Ti-15-3
[0]g
As-fabricated
Stress ratio = 0.1

(a) Max. stress = 280 MPa; | (b) Max. stress = 31Ma;

50,000 cycles 50,000 cycles
Double edge "

notched specimen 1 mm

l--A'- la

(c) Max. stress = 345 MPa;  (d) Max. stress = 380 MPa;
50,000 cycles 50,000 cycles

Figure 7.- Surface replicas of damage growth in ASF [0]8 specimen.
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